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4. Minimax and planning problems

� Optimizing piecewise linear functions

� Minimax problems

� Example: Chebyshev center

� Multi-period planning problems

� Example: building a house
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LPs and polyhedra

Linear programs have polyhedral feasible sets:

{x | Ax ≤ b} =⇒

Can every polyhedron be expressed as Ax ≤ b?

Not this one...
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LPs and polyhedra

If x , y ∈ Rn, then the linear combination

w = αx + (1− α)y for some 0 ≤ α ≤ 1

is called a convex combination. As we vary α, it traces out
the line segment that connects x and y .

x

y

αx + (1− α)y

0
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LPs and polyhedra

If Ax ≤ b and Ay ≤ b, and w is a convex
combination of x and y , then Aw ≤ b.

Proof: Suppose w = αx + (1− α)y .

Aw = A (αx + (1− α)y)

= αAx + (1− α)Ay

≤ αb + (1− α)b

= b

Therefore, Aw ≤ b, which is what we were trying to prove.

Question: where did we use the fact that 0 ≤ α ≤ 1 ?
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LPs and polyhedra

The previous result implies that every polyhedron describable
as Ax ≤ b must contain all convex combinations of its points.

� Such polyhedra are called convex.

� Informal definition: if you were to “shrink-wrap” it, the
entire polyhedron would be covered with no extra space.

Convex: Not convex:

Goes the other way too: every convex polyhedron can be
represented as Ax ≤ b for appropriately chosen A and b.
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Piecewise linear functions

� Some problems do not appear to be LPs but can be
converted to LPs using a suitable transformation.

� An important case: convex piecewise linear functions.

Consider the following
nonlinear optimization:

minimize
x

f (x)

subject to: x ≥ 0

Where f (x) is the function:
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f (x)
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Piecewise linear functions
The trick is to convert the problem into epigraph form: add
an extra decision variable t and turn the cost into a constraint!

minimize
x

f (x)

subject to: x ≥ 0

=⇒
minimize

x ,t
t

subject to: t ≥ f (x)

x ≥ 0
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x
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f (x)
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t

polyhedral
feasible set!
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Piecewise linear functions

-1 1 2 3 4
x

1

2

3

4
t

minimize
x ,t

t

subject to: t ≥ f (x)

x ≥ 0

This feasible set is polyhedral. It is the set of (x , t) satisfying:{
t ≥ −2x + 3, t ≥ −1

2
x + 3

2
, t ≥ 3x − 9

}
Equivalent linear program:

minimize
x ,t

t

subject to: t ≥ −2x + 3, t ≥ −1
2x + 3

2

t ≥ 3x − 9, x ≥ 0
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Piecewise linear functions

Epigraph trick only works if it’s a convex polyhedron.
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x

1
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f (x)

=⇒
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x

1

2
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4
t

This epigraph is not a convex polyhedron so it cannot be
the feasible set of a linear program.
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Minimax problems
� The maximum of several linear functions is always convex.

So we can minimize it using the epigraph trick. Example:

f (x) = max
i=1,...,k

{
aTi x + bi

}
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x

-2
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f (x)
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t

min
x

max
i=1,...,k

{
aTi x + bi

}
=⇒ min

x ,t
t

s.t. t ≥ aTi x + bi ∀i
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Maximin problems
� The minimum of several linear functions is always concave.

So we can maximize it using the epigraph trick. Example:

f (x) = min
i=1,...,k

{
aTi x + bi

}
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x
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f (x)
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t

max
x

min
i=1,...,k

{
aTi x + bi

}
=⇒ max

x ,t
t

s.t. t ≤ aTi x + bi ∀i

4-11



Minimax and Maximin problems

� A minimax problem:

min
x

max
i=1,...,k

{
aTi x + bi

}
=⇒

min
x ,t

t

s.t. t ≥ aTi x + bi ∀i

� A maximin problem:

max
x

min
i=1,...,k

{
aTi x + bi

} =⇒ max
x ,t

t

s.t. t ≤ aTi x + bi ∀i

Note: Sometimes called minmax, min-max, min/max.
Of course, minmax 6= maxmin!
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Minimax and Maximin problems

Practical scenario:

� Paintco produces specialized paints and we are planning
production for the coming year. They have some flexibility in
how they produce the paints, but ultimately they require
employees, as well as electricity, water, and certain chemicals.

� Nobody knows for sure how much paints will sell for, and the
future price of electricity, water, and the chemicals is also
unknown. But planning decision must be made now.

� Three consulting firms are hired to forecast the costs for the
coming year. The three firms return with three different
forecasts (cost functions f1, f2, f3). Which one should be used?

� The risk-averse approach is to solve the minimax problem:

min
x

max
i=1,2,3

{fi (x)} 6= max
i=1,2,3

{
min
x

fi (x)
}
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Absolute values

� Absolute values are piecewise linear!

min
x
|x |

s.t. Ax ≤ b
=⇒

min
x ,t

t

s.t. Ax ≤ b

t ≥ x

t ≥ −x

� So are sums of absolute values:

min
x ,y

|x |+ |y | =⇒
min
x ,y ,t,r

t + r

s.t. t ≥ x , t ≥ −x
r ≥ y , r ≥ −y
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Chebyshev center

What is the largest sphere you can fit inside a polyhedron?

y

d1

d2

d3

d4 d5

If y is the center, then draw
perpendicular lines to each
face of the polyhedron.

We want to maximize the
smallest di . In other words,

max
y

min
i=1,...,5

di(y)

(the y shown here is
obviously not optimal!)
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Chebyshev center

What is the largest sphere you can fit inside a polyhedron?

y

d1

d2

d3

d4 d5

If y is the center, then draw
perpendicular lines to each
face of the polyhedron.

We want to maximize the
smallest di . In other words,

max
y

min
i=1,...,5

di(y)

The optimal y is the
Chebyshev center
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Chebyshev center

Finding the Chebyshev center amounts to solving an LP!

y

a

-1 1 2 3 4

1

2

3

4 To compute the distance between y
and the hyperplane aTx = b, notice
that if the distance is r , then y + r

‖a‖a
belongs to the hyperplane:

aT
(
y + r

‖a‖a
)

= b

Simplifying, we obtain: aTy +‖a‖r = b

“The distance between y and each hyperplane is at least r”
is equivalent to saying that aTi y + ‖ai‖r ≤ bi for each i .
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Chebyshev center

Finding the Chebyshev center amounts to solving an LP!

The transformation to an LP is given by:

max
y

min
i=1,...,k

di(y)

s.t. aTi y ≤ bi ∀i
=⇒ max

y ,r
r

s.t. aTi y + ‖ai‖r ≤ bi ∀i
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Chebyshev center
Example: find the Chebyshev center of the polyhedron
defined by the following inequalities:

2x − y + 2z ≤ 2, −x + 2y + 4z ≤ 16, x + 2y − 2z ≤ 8,

x ≥ 0, y ≥ 0, z ≥ 0

Chebyshev.ipynb
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http://nbviewer.jupyter.org/url/www.laurentlessard.com/teaching/cs524/examples/Chebyshev.ipynb


Multi-period planning problems

� Optimization problems with a temporal component.

� Decisions must be made over the course of multiple time
periods in order to optimize an overall cost.

Examples:

� scheduling: classes, tasks, employees, projects,...

� sequential decisions: investments, commitments,...

The decisions at each time period are coupled and must be
jointly optimized. Otherwise we risk making decisions that
seem good at the time but end up being very costly later.

4-20



Multi-period planning problems

� These problems tend to be tricky to model. It is often not
clear what the decision variables should be.

� There are often more variables than you expect.

Important: Decision variables aren’t always
things that you decide directly!

We will see several examples of this...
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Example: building a house

Several tasks must be completed in
order to build a house.

� Each task takes a known amount
of time to complete.

� A task may depend on other
tasks, and can only be started
once those tasks are complete.

� Tasks may be worked on
simultaneously as long as they
don’t depend on one another.

� How fast can the house be built?

Source: HBR 1963 4-22



Example: building a house

The data can be visualized
using a directed graph.

� Arrows indicate task
dependencies.

What are the
decision variables?

� ti : start time of i th task.

� precedence constraints are
expressed in terms of ti ’s.

� minimize tx .

Source: HBR 1963 4-23



Example: building a house

A small sample:

Let tl , to , tm, tn, tt , ts be start
times of the associated tasks.

Now use the graph to write the
dependency constraints:

� Tasks o, m, and n can’t start until task l is finished, and task l
takes 3 days to finish. So the constraints are:

tl + 3 ≤ to , tl + 3 ≤ tm, tl + 3 ≤ tn

� Task t can’t start until tasks m and n are finished. Therefore:
tm + 1 ≤ tt , tn + 2 ≤ tt ,

� Task s can’t start until tasks o and t are finished. Therefore:
to + 3 ≤ ts , tt + 3 ≤ ts

Source: HBR 1963 4-24



Example: building a house

Full implementation in Julia:

House.ipynb

Follow-up: which tasks in the project are critical to finishing
on time? Which tasks can withstand delays?

� related to notion of duality we will see later.
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http://nbviewer.jupyter.org/url/www.laurentlessard.com/teaching/cs524/examples/House.ipynb
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